Finding Limits Algebraically - Classwork

We are going to now determine limits without benefit of looking at a graph, that is $\lim_{x \to a} f(x)$.There are three steps to remember:1) plug in a
2) Factor/cancel and go back to step 1
3) ∞ , $-\infty$, or DNEExample 1) find $\lim_{x \to -2} x^2 - 4x + 1$
You can do this by plugging in.Example 2) find $\lim_{x \to -2} \frac{2x - 6}{x - 2}$
You can also do this by plugging in.Example 3) find $\lim_{x \to -2} \frac{x^2 - 2x - 8}{x^2 - 4}$
Plug in and you get $\frac{0}{0}$ - no good
So attempt to factor and cancelExample 4) find $\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - 1}$
Plug in and you get $\frac{0}{0}$ - no good

If steps 1 and 2 do not work (you have a zero in the denominator, your answer is one of the following:

∞ - ∞ Does Not Exist (DNE)

To determine which, you must split your limit into two separate limits:: $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$. Make a sign chart by plugging in a number close to *a* on the left side and determining its sign. You will also plug in a number close to *a* on the right side and determine its sign. Each of these will be some form of ∞ , either positive or negative. Only if they are the same will the limit be ∞ or $-\infty$.

What this says is that in this case, $\lim_{x \to a^-} f(x) = \text{ some form of } \infty$ and $\lim_{x \to a^+} f(x) = \text{ some form of } \infty$ You need to check whether they are the same.

Example 5) find
$$\lim_{x\to 2} \frac{2x+5}{x-2}$$

Step 1) Plug in $-\frac{9}{0}$ - no good Step 2) - No factoring/cancel So your answer is ∞ , $-\infty$ or DNE

Example 6) find $\lim_{x\to 0} \frac{4}{x^2}$ Step 1) Plug in $-\frac{4}{0}$ - no good Step 2) - No factoring/cancel So your answer is ∞ , $-\infty$ or DNE

Example 7) find
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^2 + 6x + 9}$$
 Example 8) find $\lim_{x \to 2} \frac{2x - 4}{x^3 - 6x^2 + 12x - 8}$

Example 9)
$$f(x) = \begin{cases} x^2 - 4, x \ge 1 \\ -2x - 1, x < 1 \end{cases}$$
 find $\lim_{x \to 1} f(x)$ Example 10) $f(x) = \begin{cases} \frac{x}{x - 2}, x \ge 2 \\ \frac{x - 3}{x - 2}, x < 2 \end{cases}$ find $\lim_{x \to 2} f(x)$

Example 11) $\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$

Finally, we are interested also in problems of the type: $\lim_{x \to \pm \infty} f(x)$. Here are the rules: Write f(x) as a fraction. 1) If the highest power of x appears in the denominator (bottom heavy), $\lim_{x \to \pm \infty} f(x) = 0$ 2) If the highest power of x appears in the numerator (top heavy), $\lim_{x \to \pm \infty} f(x) = \pm \infty$ plug in very large or small numbers and determine the sign of the answer 3) If the highest power of x appears both in the numerator and denominator (powers equal), $\lim_{x \to \pm \infty} f(x) = \frac{\text{coefficient of numerator's highest power}}{\text{coefficient of denominator's highest power}}$

Example 12)
$$\lim_{x \to \infty} \frac{4x^2 + 50}{x^3 - 85}$$
 Example 13) $\lim_{x \to \infty} \frac{4x^3 - 5x^2 + 3x - 1}{5x^3 - 7x - 25}$ Example 14) $\lim_{x \to \infty} \frac{3x^3 - 23}{4x - 1}$

Example 15)
$$\lim_{x \to -\infty} \frac{4x - 5x^2 + 3}{\frac{1}{x}}$$
 Example 16)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x}}{2x + 1}$$
 Example 17)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 3x}}{2x + 1}$$

Finding Limits Algebraically - Homework

1)
$$\lim_{x\to 0} 12$$

2) $\lim_{x\to 0} \pi$
3) $\lim_{x\to 2} 4x$
4) $\lim_{x\to 3} 3x^2 - 4x - 1$
5) $\lim_{x\to 0} 5x^3 - 7x^2 + 2^x - 2$
6) $\lim_{y\to -1} 3y^4 - 6y^3 - 2y$
7) $\lim_{x\to 4} \frac{2x-4}{x-1}$
8) $\lim_{x\to 2} \frac{x^2 + 4x + 4}{x^2}$
9) $\lim_{x\to 1} \frac{2x-2}{x-1}$
10) $\lim_{x\to 4} \frac{x^2 - 16}{x-4}$
11) $\lim_{x\to 4} \frac{x^3 + 8}{t+2}$
12) $\lim_{x\to 4} \frac{x^2 - 4x + 4}{x^2 + x - 6}$
13) $\lim_{x\to 4} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$
14) $\lim_{x\to 4} \frac{x^2 + x^2 - 5x + 3}{x^3 - 3x + 2}$
15) $\lim_{x\to 3} \frac{x}{x-3}$
16) $\lim_{x\to 4} \frac{x}{x^2 - 2x}$
17) $\lim_{y\to 6} \frac{y^2 + 6}{y^2 - 36}$
18) $\lim_{x\to 4} \frac{3 - x}{x^2 - 2x - 8}$
19) $\lim_{x\to 4} \frac{4}{x^2 - 2x + 1}$
20) $\lim_{x\to 3} \frac{x}{x-5}$
21) $\lim_{x\to 3} \frac{-x^2}{x^2 - 6x + 9}$

22)
$$f(x) = \begin{cases} x - 1, x \ge 3\\ 2x - 3, x < 3 \end{cases} \text{ find } \lim_{x \to 3} f(x)$$
 23)
$$f(x) = \begin{cases} x^3 - 1, x \ge -1\\ 2x, x < -1 \end{cases} \text{ find } \lim_{x \to -1} f(x)$$

24)
$$f(x) = \begin{cases} \frac{x-2}{x-1}, x \ge 1\\ \frac{x}{x-1}, x < 1 \end{cases}$$
 find $\lim_{x \to 1} f(x)$ 25) $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$

26) Let
$$f(x) =\begin{cases} x^2 - 2x - 3, x \neq 2\\ k - 3, x = 2 \end{cases}$$

find k such that $\lim_{x \to 2} f(x) = f(2)$
27) $f(x) =\begin{cases} \frac{x^2 - 49}{x - 7}, x \neq 7\\ k^2 - 2, x = 7 \end{cases}$
find k such that $\lim_{x \to 7} f(x) = f(7)$

28)
$$\lim_{x \to \infty} 6$$
 29) $\lim_{x \to \infty} (-2x+11)$ 30) $\lim_{x \to -\infty} (3x^4 - 3x^3 + 5x^2 + 8x - 3)$

31)
$$\lim_{x \to \infty} \frac{2x-3}{4x+5}$$
 32) $\lim_{x \to -\infty} \frac{7-3x^3}{2x^3+1}$ 33) $\lim_{x \to \infty} \frac{2}{5x-3}$

34)
$$\lim_{x \to -\infty} \frac{2x+30}{6x^{12}-5}$$
 35)
$$\lim_{x \to \infty} \frac{4x^4}{6x^3-19}$$
 36)
$$\lim_{x \to -\infty} \frac{4x^2-3x-2-5x^3}{9x^2+9x+7}$$

37)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 4}}$$
 38) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 4}}$ 39) $\lim_{x \to -\infty} \frac{\sqrt{3x^2 + x}}{x^2 - 1}$

Γ