We are going to now determine limits without benefit of looking at a graph, that is $\lim _{x \rightarrow a} f(x)$. There are three steps to remember: 1) plug in a
2) Factor/cancel and go back to step 1
3) $\infty,-\infty$, or DNE

Example 1) find $\lim _{x \rightarrow-2} x^{2}-4 x+1$
You can do this by plugging in.

Example 3) find $\lim _{x \rightarrow-2} \frac{x^{2}-2 x-8}{x^{2}-4}$
Plug in and you get $\frac{0}{0}$ - no good So attempt to factor and cancel

Example 2) find $\lim _{x \rightarrow-2} \frac{2 x-6}{x-2}$
You can also do this by plugging in.

Example 4) find $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{3}-1}$
Plug in and you get $\frac{0}{0}$ - no good
So attempt to factor and cancel

If steps 1 and 2 do not work (you have a zero in the denominator, your answer is one of the following:
$\infty \quad-\infty \quad$ Does Not Exist (DNE)

To determine which, you must split your limit into two separate limits.: $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a+} f(x)$. Make a sign chart by plugging in a number close to a on the left side and determining its sign. You will also plug in a number close to a on the right side and determine its sign. Each of these will be some form of ∞, either positive or negative. Only if they are the same will the limit be ∞ or $-\infty$.

What this says is that in this case, $\lim _{x \rightarrow a^{-}} f(x)=$ some form of ∞ and $\lim _{x \rightarrow a+} f(x)=$ some form of ∞ You need to check whether they are the same.
Example 5) find $\lim _{x \rightarrow 2} \frac{2 x+5}{x-2}$
Step 1) Plug in $-\frac{9}{0}$ - no good Step 2) - No factoring/cancel So your answer is $\infty,-\infty$ or DNE

Example 6) find $\lim _{x \rightarrow 0} \frac{4}{x^{2}}$
Step 1) Plug in $-\frac{4}{0}$ - no good Step 2) - No factoring/cancel So your answer is $\infty,-\infty$ or DNE

Example 7) find $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x^{2}+6 x+9}$
Example 8) find $\lim _{x \rightarrow 2} \frac{2 x-4}{x^{3}-6 x^{2}+12 x-8}$

Example 9) $f(x)=\left\{\begin{array}{l}x^{2}-4, x \geq 1 \\ -2 x-1, x<1\end{array}\right.$ find $\lim _{x \rightarrow 1} f(x)$
Example 10) $f(x)=\left\{\begin{array}{l}\frac{x}{x-2}, x \geq 2 \\ \frac{x-3}{x-2}, x<2\end{array}\right.$ find $\lim _{x \rightarrow 2} f(x)$

Example 11) $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$
Finally, we are interested also in problems of the type: $\lim _{x \rightarrow \pm \infty} f(x)$. Here are the rules:
Write $f(x)$ as a fraction. 1) If the highest power of x appears in the denominator (bottom heavy), $\lim _{x \rightarrow \pm \infty} f(x)=0$
2) If the highest power of x appears in the numerator (top heavy), $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$
plug in very large or small numbers and determine the sign of the answer
3) If the highest power of x appears both in the numerator and denominator (powers equal), $\lim _{x \rightarrow \pm \infty} f(x)=\frac{\text { coefficient of numerator's highest power }}{\text { coefficient of denominator's highest power }}$

Example 12) $\lim _{x \rightarrow \infty} \frac{4 x^{2}+50}{x^{3}-85} \quad$ Example 13) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-5 x^{2}+3 x-1}{5 x^{3}-7 x-25} \quad$ Example 14) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-23}{4 x-1}$

Example 15) $\lim _{x \rightarrow-\infty} \frac{4 x-5 x^{2}+3}{\frac{1}{x}} \quad$ Example 16) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-3 x}}{2 x+1} \quad$ Example 17) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-3 x}}{2 x+1}$

Finding Limits Algebraically - Homework

1) $\lim _{x \rightarrow 5} 12$
2) $\lim _{x \rightarrow 5} 3 x^{2}-4 x-1$
3) $\lim _{x \rightarrow 4} \frac{2 x-4}{x-1}$
4) $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x^{2}}$
5) $\lim _{x \rightarrow 1} \frac{2 x-2}{x-1}$
6) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
7) $\lim _{t \rightarrow-2} \frac{t^{3}+8}{t+2}$
8) $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}+x-6}$
9) $\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{2}-3 x-4}$
10) $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-5 x+3}{x^{3}-3 x+2}$
11) $\lim _{x \rightarrow 3} \frac{x}{x-3}$
12) $\lim _{x \rightarrow 5} \frac{x}{x^{2}-25}$
13) $\lim _{y \rightarrow 6} \frac{y+6}{y^{2}-36}$
14) $\lim _{x \rightarrow 4} \frac{3-x}{x^{2}-2 x-8}$
15) $\lim _{x \rightarrow 1} \frac{4}{x^{2}-2 x+1}$
16) $\lim _{x \rightarrow 5} \frac{x}{|x-5|}$
17) $\lim _{x \rightarrow 3} \frac{-x^{2}}{x^{2}-6 x+9}$
18) $f(x)=\left\{\begin{array}{l}x-1, x \geq 3 \\ 2 x-3, x<3\end{array}\right.$ find $\lim _{x \rightarrow 3} f(x)$
19) $f(x)=\left\{\begin{array}{l}x^{3}-1, x \geq-1 \\ 2 x, x<-1\end{array}\right.$ find $\lim _{x \rightarrow-1} f(x)$
20) $f(x)=\left\{\begin{array}{l}\frac{x-2}{x-1}, x \geq 1 \\ \frac{x}{x-1}, x<1\end{array}\right.$ find $\lim _{x \rightarrow 1} f(x)$
21) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
22) Let $f(x)=\left\{\begin{array}{l}x^{2}-2 x-3, x \neq 2 \\ k-3, x=2\end{array}\right.$
find k such that $\lim _{x \rightarrow 2} f(x)=f(2)$
23) $f(x)=\left\{\begin{array}{l}\frac{x^{2}-49}{x-7}, x \neq 7 \\ k^{2}-2, x=7\end{array}\right.$
find k such that $\lim _{x \rightarrow 7} f(x)=f(7)$
24) $\lim _{x \rightarrow \infty} 6$
25) $\lim _{x \rightarrow \infty}(-2 x+11)$
26) $\lim _{x \rightarrow-\infty}\left(3 x^{4}-3 x^{3}+5 x^{2}+8 x-3\right)$
27) $\lim _{x \rightarrow \infty} \frac{2 x-3}{4 x+5}$
28) $\lim _{x \rightarrow-\infty} \frac{7-3 x^{3}}{2 x^{3}+1}$
29) $\lim _{x \rightarrow \infty} \frac{2}{5 x-3}$
30) $\lim _{x \rightarrow-\infty} \frac{2 x+30}{6 x^{12}-5}$
31) $\lim _{x \rightarrow \infty} \frac{4 x^{4}}{6 x^{3}-19}$
32) $\lim _{x \rightarrow-\infty} \frac{4 x^{2}-3 x-2-5 x^{3}}{9 x^{2}+9 x+7}$
33) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+4}}$
34) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+4}}$
35) $\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}+x}}{x^{2}-1}$
