Ready, Set, Go!

© www.flickr.com/photos/adampenney/

Ready

Name:

Topic: Describe the spread of the data.

Given the box-and-whisker plots describe the spread of the data set. Provide specifics about the median, range, interquartile range and so forth.

1.

2.

- 3. If the box-and-whisker plots above represent the results of two different classes on the same assessment, which class did better? Why?
- 4. The two box-and-whisker plots below show the low temperatures for two cities in the United States.

- a. Which city would be considered the coldest City D or City E? Why?
- b. Do these cities ever experience the same temperature? How do you know?
- c. Is there any way to know the exact temperature for any given day from the box and whisker plots?
- d. What advantage if any could a scatter plot of temperature data have over a box and whisker plot?

© 2012 Mathematics Vision Project| M ${f V}$ P

In partnership with the Utah State Office of Education

Topic: Residuals, residual plots and correlation coefficients.

The Data Sheets below are scatter plots that have the regression line and the residuals indicated.

5a. Mark on the graph where (\bar{x}, \bar{y}) would be located.

- b. Use this given plot to create a residual plot.
- c. What would you predict the correlation coefficient to be?

- 6a. Mark on the graph where (\bar{x}, \bar{y}) would be located.
- b. Use this given plot to create a residual plot.
- c. What would you predict the correlation coefficient to be?

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

The following graphs are residual plots. Analyze the residual plots to determin how well the prediction line (line of best fit) describes the data.

7. Plot 1

Analysis

8. Plot 2

Analysis

Go

Topic: Geometric constructions.

9. Construct an isosceles triangle with a compass and straight edge.

10. Construct a square using compass and straight edge...

11. Use a compass and straight edge to construct a hexagon inscribed in a circle.

© 2012 Mathematics Vision Project \mid M $oldsymbol{V}$ P In partnership with the Utah State Office of Education

