Ready, Set, Go!

Ready

Topic: Creating graphical representations and naming the domain.

Sketch a graph to represent each function, then state the domain of the function.

$$1. y = 3x - 5$$

2.
$$f(x) = 3(4)^x$$

3. A sequence of terms such that

$$f(0) = 1, f(n) = f(n - 1) - 7$$

4. A sequence of terms such that

$$f(1) = 8$$
, $f(n) = \frac{1}{2}f(n-1)$

Set

Topic: Attributes of linear and exponential functions.

© 2012 Mathematics Vision Project| M $oldsymbol{V}$ P

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

Features of Functions 5.3

Determine if the statement is true or false, then justify why.

- 5. All linear functions are increasing.
- 6. Arithmetic sequences are an example of linear functions.
- 7. Exponential functions have a domain that includes all real numbers.
- 8. Geometric sequences have a domain that includes all integers.
- 9. The range for an exponential function includes all real numbers.
- 10. All linear relationships are functions with a domain and range containing all real numbers.

Go

Topic: Determine the domain of a function from the graphical representation.

For each graph determine the domain of the function.

11.

12.

14.

© 2012 Mathematics Vision Project | MVP

In partnership with the Utah State Office of Education