Ready, Set, Go!

©2012 www.flickr.com/photos/cannongod

Ready

Topic: Simple interest

When a person borrows money, the lender usually charges "rent" on the money. This "rent" is called interest. Simple interest is a percent " \mathbf{r} " of the original amount borrowed " \mathbf{p} " multiplied by the time " \mathbf{t} ", usually in years. The formula for calculating the interest is $\mathbf{i} = \mathbf{prt}$.

Calculate the simple interest owed on the following loans.

1.	p = \$1000	r = 11%	t = 2 years	i =
2.	<i>p</i> = \$6500	r = 12.5%	t = 5 years	i =
3.	p = \$20,000	r = 8.5%	t = 6 years	i =
4.	<i>p</i> = \$700	r = 20%	t = 6 months	i =

Juanita borrowed \$1,000 and agreed to pay 15% interest for 5 years. Juanita did not have to make any payments until the end of the 5 years, but then she had to pay back the amount borrowed "P" plus all of the interest "i" for the 5 years "t." Below is a chart that shows how much money Juanita owed the lender at the end of each year of the loan.

End of year	Interest owed for the year	Total Amount owed to the lender to pay back the loan.
1	\$1000 X .15 = \$150	A = Principal + interest = \$1150
2	\$1000 X .15 = \$150	A = P + i + i = \$1300
3	\$1000 X .15 = \$150	A = P + i + i + i = \$1450
4	\$1000 X .15 = \$150	A = P + i + i + i + i = \$1600
5	\$1000 X .15 = \$150	A = P + i + i + i + i + i = \$1750

- 5. Look for the pattern you see in the chart above for the amount (A) owed to the lender. Write an function that best describes A with respect to time (in years).
- 6. At the end of year 5, the interest was calculated at 15% of the original loan of \$1000. But by that time Juanita owed \$1600 (before the interest was added.) What percent of \$1600 is \$150?
- 7. Consider if the lender charged 15% of the amount owed instead of 15% of the amount of the original loan. Make a fourth column on the chart and calculate the interest owed each year if the lender required 15% of the amount owed at the end of each year. Note that the interest owed at the end of the first year would still be \$150. Fill in the 4^{th} column.

© 2012 Mathematics Vision Project| M ${f V}$ P

 $\label{like} In\ partnership\ with\ the\ Utah\ State\ Office\ of\ Education$ Licensed under the Creative\ Commons\ Attribution-NonCommercial-ShareAlike\ 3.0\ Unported\ license.

Set

Topic: The 4 forms of a linear equation

- 8. Below are the 4 forms of the same linear equation. For each equation, do the following
 - (a) Circle the rate of change
 - (b) Name the point that describes the y-intercept
 - (c) Name the point that describes the x-intercept

Slope-intercept	Point-slope	Standard	Recursive formula	(b)	(c)
8. $y = 3x - 2$	y - 13 = 3(x - 5)	3x - y = 2	f(0) = -2 f(n) = f(n-1) + 3		
9. $y = \frac{1}{4}x + 7$	$y - 5 = \frac{1}{4}(x + 8)$	x - 4y = -28	$ f(0) = 7 f(n) = f(n-1) + \frac{1}{4} $		
10. $y = -\frac{2}{3}x + 3$	$y + 1 = -\frac{2}{3}(x - 6)$	2x + 3y = 9	f(0) = 3 $f(n) = f(n-1) - \frac{2}{3}$		

Go

Topic: Solving multi-step equations

Solve the following equations

11.
$$12 + 6x - 4 = 5 + 2(3x - 1)$$

12.
$$5(2x + 4) = 3(x + 5) - 19$$

13.
$$7 - 3(4x + 2) = 6(2x + 3) - 17$$

14.
$$2(x + 1) = 6(x - 3)$$

- What does it mean when you have solved an equation? 15.
- Explain how a linear equation can have more than one solution. 16.

Need Help? Check out these related videos:

Solving equations: http://www.purplemath.com/modules/solvelin4.htm

Interest: http://www.khanacademy.org/finance-economics/core-finance/v/introduction-to-interest

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education